Connect with us
Weather Data Source: pronóstico del tiempo

Ciencia

Por qué el asteroide Faetón es increiblemente azul

Published

on

MADRID, 14 Jun. (EUROPA PRESS) – El extraño color azul del asteroide Faetón ha sido un rompecabezas para los investigadores desde su descubrimiento en 1983, pero un nuevo estudio puede haber encontrado finalmente la razón.

Usando un modelo para simular los procesos físicos y químicos que ocurren en Faetón mientras orbita alrededor del Sol, un par de investigadores han demostrado cómo el calor extremo y la eliminación preferencial de ciertas moléculas de la superficie de Faetón podrían dejarlo azul, y probablemente podría hacerlo en cualquier otro asteroide también.

Sus hallazgos fueron publicados en línea en abril en la revista Icarus.

Los científicos conocen solo unas pocas docenas de asteroides en el sistema solar que tienen un tono azulado, pero Faetón aún se destaca, incluso entre esa pequeña multitud.

«Es increíblemente azul», dijo Carey Lisse, científica planetaria sénior del Laboratorio de Física Aplicada (APL) de Johns Hopkins y autora del estudio. «De hecho, Faetón está cerca de ser el objeto más azul que existe en términos de asteroides».

Los científicos han asumido que el calor extremo tiene algo que ver con el tono de Faetón. Después de todo, su órbita inusualmente parecida a la de un cometa lo lleva más allá de Marte antes de sumergirlo a solo 20,9 millones de kilómetros del Sol, unas tres veces más cerca que Mercurio, elevando las temperaturas a 800 grados Celsius. De hecho, sus análogos de laboratorio más cercanos son meteoritos que han estado expuestos a calor extremo, la mayoría de ellos ricos en minerales arcillosos y especies de carbono inorgánico como el negro de carbón.

Pero no está claro qué hizo el calor para que Faetón se volviera azul.

Lisse, sin embargo, tuvo una idea después de reflexionar sobre el trabajo que realizó para el encuentro cercano de la misión New Horizons de la NASA con el objeto Arrokoth del cinturón de Kuiper en 2019. Muchos cuerpos rocosos sin aire, incluido Arrokoth, aparecen de un gris opaco a un rojo oxidado gracias a los rayos cósmicos y ultravioleta que golpean la superficie y «tostar» cualquier material orgánico a base de carbono, «al igual que las cosas que quemas en tu cocina», explicó en un comunicado. Los rayos también derritieron la roca, haciendo emerger diminutos cristales de hierro de color rojo oscuro de apenas unas milmillonésimas de metro de largo.

Pero, ¿qué sucede si esos materiales se exponen a las duras temperaturas cerca del Sol? Debido a que las especies moleculares se congelan, se derriten y se vaporizan a diferentes temperaturas y presiones, es posible que Faetón alguna vez fuera rojo como otros cuerpos rocosos, pero perdió esos materiales cuando fueron vaporizados por el calor del Sol.

Lisse y su colega Jordan Steckloff, un científico planetario del Instituto de Ciencias Planetarias en Tucson, Arizona, crearon un modelo para estimar la temperatura de la superficie de Faetón en cada punto a lo largo de su órbita y calcular qué cantidad de cada material en la superficie de Faetón –rico en carbono orgánicos, agua, hierro, minerales rocosos como piroxeno y olivino, vaporizados en el camino.

Descubrieron que en el acercamiento más cercano al Sol, los compuestos orgánicos rojos y pequeños trozos de hierro en la superficie se evaporan antes que los materiales rocosos más resistentes. «Básicamente estás quitando el enrojecimiento de la superficie», dijo Lisse. Aunque parte del color rojo vuelve a acumularse cuando Faetón orbita más allá de Marte, se pierde nuevamente cuando Faetón se acerca al Sol. Después de miles de revoluciones, todo lo que queda son materiales que reflejan colores más oscuros y fríos.

«Me sorprendió un poco que la idea realmente funcionara», dijo Steckloff. Inicialmente, no estaba seguro de que el hierro, específicamente, se vaporizaría lo suficientemente rápido como para marcar la diferencia. «Parece una locura pensar que tal vez Faetón se vea tan azul porque se calienta tanto que produce preferentemente gas de hierro en lugar de gas de roca, pero aparentemente eso no es tan loco después de todo».

Smooth sospecha que hay aún más en el tono azul de Phaethon. «Es posible que incluso esté dejando residuos de carbono que se han convertido en hollín», que tiene un tono azul, dijo. «Pero, ¿puedes realmente quemar las cosas limpiamente y dejar un residuo de hollín, o simplemente se vaporizará y desaparecerá?»

Independientemente, él y Steckloff argumentan que este proceso de eliminación de enrojecimiento significa que cualquier cuerpo pequeño podría volverse azul si cayera en una órbita como la de Faetón. El cometa 96P/Machholz, por ejemplo, roza aún más cerca del Sol que Phaethon, a solo 18,6 millones de kilómetros; también está agotado de especies de carbono y aparece anormalmente azul. El cometa 322P, otro cometa que roza el Sol, también tiene un núcleo inusualmente azul.

«Este tipo de órbitas tardan mucho en evolucionar, pero eso es exactamente lo que necesitamos: un proceso que requiere que el objeto sea muy antiguo y evolucione térmicamente», dijo Steckloff. «La historia parece mantenerse unida».

Señala que hay algunas limitaciones. La superficie del cuerpo, por ejemplo, tiene que ser mayormente estable y relativamente plana. «No podía tener mucha topografía», explicó, porque las tensiones del calor extremo provocarían deslizamientos de tierra, o el equivalente, que volvería a enterrar cualquier superficie que se haya cambiado.

Ciencia

Un robot con aspecto de hada vuela con la fuerza del viento y la luz

Published

on

MADRID, 30 Ene. (EUROPA PRESS) –

Investigadores de la Universidad de Tampere han desarrollado el primer robot volador pasivo dotado de músculo artificial, con la idea final de utilizarlo en el futuro para la polinización artificial.

La pérdida de polinizadores, como las abejas, es un enorme reto para la biodiversidad mundial y afecta a la humanidad al causar problemas en la producción de alimentos.

El desarrollo de polímeros que responden a estímulos ha abierto un abanico de posibilidades en cuanto a materiales para la próxima generación de robots de cuerpo blando a pequeña escala y controlados de forma inalámbrica. Desde hace algún tiempo, los ingenieros saben cómo utilizar estos materiales para fabricar pequeños robots capaces de caminar, nadar y saltar. Hasta ahora, nadie había sido capaz de hacerlos volar.

Los investigadores del grupo de Robots Ligeros de la Universidad de Tampere investigan ahora cómo hacer volar materiales inteligentes. Hao Zeng, investigador de la Academia y jefe del grupo, y Jianfeng Yang, investigador doctoral, han ideado un nuevo diseño para su proyecto llamado FAIRY (Flying Aero-robots based on Light Responsive Materials Assembly). Han desarrollado un robot de ensamblaje de polímeros que vuela con el viento y se controla con la luz.

«Superior a sus homólogos naturales, esta ‘semilla’ artificial está equipada con un actuador blando. El actuador está hecho de elastómero cristalino líquido sensible a la luz, que induce acciones de apertura o cierre de las cerdas ante la excitación de la luz visible», explica Hao Zeng en un comunicado.

El hada artificial desarrollada por Zeng y Yang tiene varias características biomiméticas. Gracias a su estructura de gran porosidad (0,95) y poco peso (1,2 mg), puede flotar fácilmente en el aire dirigida por el viento. Además, la generación de un anillo de vórtices separados y estables permite desplazamientos a larga distancia asistidos por el viento.

«El ‘hada’ puede ser alimentada y controlada por una fuente de luz, como un rayo láser o un LED», afirma Zeng.

Esto significa que se puede utilizar la luz para cambiar la forma de la diminuta estructura parecida a una semilla de diente de león. El hada puede adaptarse manualmente a la dirección y la fuerza del viento cambiando su forma. También se puede utilizar un haz de luz para controlar las acciones de despegue y aterrizaje de este conjunto polimérico.

A continuación, los investigadores se centrarán en mejorar la sensibilidad del material para permitir el funcionamiento del dispositivo a la luz del sol. Además, ampliarán la estructura para que pueda transportar dispositivos microelectrónicos como GPS y sensores, así como compuestos bioquímicos.

POLINIZACIÓN ARTIFICIAL

Según Zeng, hay potencial para aplicaciones aún más significativas. «Suena a ciencia ficción, pero los experimentos de prueba de concepto incluidos en nuestra investigación demuestran que el robot que hemos desarrollado supone un paso importante hacia aplicaciones realistas adecuadas para la polinización artificial», revela.

En el futuro, millones de semillas artificiales de diente de león portadoras de polen podrían ser dispersadas libremente por los vientos naturales y luego dirigidas por la luz hacia zonas específicas con árboles en espera de polinización.

«Esto tendría un enorme impacto en la agricultura mundial, ya que la pérdida de polinizadores debida al calentamiento global se ha convertido en una grave amenaza para la biodiversidad y la producción de alimentos», afirma Zeng.

Sin embargo, antes hay que resolver muchos problemas. Por ejemplo, ¿cómo controlar el punto de aterrizaje de forma precisa? ¿Cómo reutilizar los dispositivos y hacerlos biodegradables? Estas cuestiones requieren una estrecha colaboración con científicos de materiales y personas que trabajen en microrobótica.

El proyecto FAIRY comenzó en septiembre de 2021 y durará hasta agosto de 2026. Está financiado por la Academia de Finlandia. El robot volador se investiga en colaboración con el Dr. Wenqi Hu, del Instituto Max Planck de Sistemas Inteligentes (Alemania), y el Dr. Hang Zhang, de la Universidad Aalto.

Continue Reading

Ciencia

La mitad del zinc de la Tierra procede del Sistema Solar exterior

Published

on

MADRID, 27 Ene. (EUROPA PRESS) –

Alrededor de la mitad de los elementos volátiles de zinc de la Tierra proceden de asteroides del Sistema Solar exterior, es decir, la que incluye los planetas Júpiter, Saturno y Urano.

También se espera que este material haya suministrado otros volátiles importantes, como el agua, según un análisis realizado por investigadores del UCL (University College London).

Los volátiles son elementos o compuestos que pasan del estado sólido o líquido al vapor a temperaturas relativamente bajas. Entre ellos se encuentran los seis elementos más comunes en los organismos vivos, así como el agua. Por tanto, la adición de este material habrá sido importante para la aparición de la vida en la Tierra.

Anteriormente, los investigadores pensaban que la mayor parte de los volátiles de la Tierra procedían de asteroides que se formaron más cerca de la Tierra. Los hallazgos revelan pistas importantes sobre cómo la Tierra llegó a albergar las condiciones especiales necesarias para sustentar la vida.

En palabras del profesor Mark Rehkamper, del Departamento de Ciencias de la Tierra e Ingeniería del Imperial College de Londres: «Nuestros datos muestran que aproximadamente la mitad del zinc de la Tierra procede del Sistema Solar exterior, más allá de la órbita de Júpiter. Basándonos en los modelos actuales de desarrollo del Sistema Solar primitivo, esto era completamente inesperado».

Investigaciones anteriores sugerían que la Tierra se formó casi exclusivamente a partir de material del Sistema Solar interior, que los investigadores dedujeron que era la fuente predominante de las sustancias químicas volátiles de la Tierra. En cambio, los nuevos hallazgos sugieren que el Sistema Solar exterior desempeñó un papel más importante de lo que se pensaba.

El profesor Rehkamper añadió en un comunicado: «Esta contribución del material del Sistema Solar exterior desempeñó un papel vital en el establecimiento del inventario de sustancias químicas volátiles de la Tierra. Parece que sin la contribución del material del Sistema Solar exterior, la Tierra tendría una cantidad de volátiles muy inferior a la que conocemos hoy, lo que la haría más seca y potencialmente incapaz de alimentar y sustentar la vida».

Los resultados se publican en Science.

Para llevar a cabo el estudio, los investigadores examinaron 18 meteoritos de orígenes diversos: once del Sistema Solar interior, conocidos como meteoritos no carbonáceos, y siete del Sistema Solar exterior, conocidos como meteoritos carbonáceos.

Para cada meteorito midieron las abundancias relativas de las cinco formas diferentes -o isótopos- del zinc. A continuación, compararon cada huella isotópica con muestras de la Tierra para estimar la contribución de cada uno de estos materiales al inventario de zinc de la Tierra. Los resultados sugieren que, aunque la Tierra sólo incorporó alrededor del diez por ciento de su masa procedente de cuerpos carbonosos, este material suministró cerca de la mitad del zinc terrestre.

Los investigadores afirman que es probable que el material con una alta concentración de zinc y otros componentes volátiles también sea relativamente abundante en el agua, lo que daría pistas sobre el origen del agua de la Tierra.

En palabras de Rayssa Martins, primera autora del artículo y doctoranda del Departamento de Ciencias de la Tierra e Ingeniería: «Hace tiempo que sabemos que a la Tierra se le añadió algo de material carbonoso, pero nuestros hallazgos sugieren que este material desempeñó un papel clave en el establecimiento de nuestro presupuesto de elementos volátiles, algunos de los cuales son esenciales para que florezca la vida».

A continuación, los investigadores analizarán rocas de Marte, que albergó agua hace entre 4.100 y 3.000 millones de años antes de secarse, y de la Luna.

El profesor Rehkamper añadió: «La teoría más extendida es que la Luna se formó cuando un enorme asteroide chocó contra una Tierra embrionaria hace unos 4.500 millones de años. El análisis de los isótopos de zinc en las rocas lunares nos ayudará a comprobar esta hipótesis y determinar si el asteroide que colisionó desempeñó un papel importante en el transporte de volátiles, incluida el agua, a la Tierra».

Continue Reading

Ciencia

Replican la gravedad en otros mundos en una esfera de 3 centímetros

Published

on

MADRID, 24 Ene. (EUROPA PRESS) –

Investigadores de la UCLA han reproducido con eficacia el tipo de gravedad que existe en las estrellas y otros planetas o cerca de ellos en una esfera de cristal de solo 3 centímetros de diámetro.

Para ello, utilizaron ondas sonoras para crear un campo gravitatorio esférico y generar convección de plasma -un proceso en el que el gas se enfría al acercarse a la superficie de un cuerpo y luego se recalienta y vuelve a elevarse al acercarse al núcleo- creando una corriente de fluido que a su vez genera una corriente magnética.

Este logro, que se publica en Physical Review Letters, podría ayudar a los científicos a superar el papel limitador de la gravedad en los experimentos destinados a modelizar la convección que se produce en las estrellas y otros planetas.

«La gente estaba tan interesada en tratar de modelizar la convección esférica con experimentos de laboratorio que, de hecho, pusieron un experimento en el transbordador espacial porque no podían conseguir un campo de fuerza central lo suficientemente fuerte en tierra», dijo en un comunicado Seth Putterman, profesor de física de la UCLA (Universidad de California Los Ángeles) y autor principal del estudio. «Lo que demostramos es que nuestro sistema de sonido generado por microondas producía una gravedad tan fuerte que la gravedad terrestre no era un factor. Ya no necesitamos ir al espacio para hacer estos experimentos».

Los investigadores de la UCLA utilizaron microondas para calentar gas de azufre a 2.760 grados Celsius dentro de la esfera de cristal. Las ondas sonoras dentro de la bola actuaron como la gravedad, limitando el movimiento del gas caliente y débilmente ionizado, conocido como plasma, en patrones que se asemejan a las corrientes de plasma en las estrellas.

«Los campos sonoros actúan como la gravedad, al menos cuando se trata de impulsar la convección en el gas», explica John Koulakis, científico del proyecto de la UCLA y primer autor del estudio. «Con el uso de sonido generado por microondas en un matraz esférico de plasma caliente, conseguimos un campo gravitatorio mil veces más fuerte que la gravedad terrestre».

En la superficie de la Tierra, el gas caliente asciende porque la gravedad mantiene el gas más denso y frío más cerca del centro del planeta.

De hecho, los investigadores descubrieron que el gas caliente y brillante cerca de la mitad exterior de la esfera también se desplazaba hacia las paredes de la esfera. La gravedad fuerte y sostenida generaba turbulencias parecidas a las que se observan cerca de la superficie del Sol. En la mitad interior de la esfera, la gravedad acústica cambió de dirección y apuntó hacia el exterior, lo que provocó que el gas caliente se hundiera hacia el centro. En el experimento, la gravedad acústica retuvo de forma natural el plasma más caliente en el centro de la esfera, donde también ocurre en las estrellas.

COMPRENDER LOS EFECTOS DEL CLIMA SOLAR

La capacidad de controlar y manipular el plasma de forma que refleje la convección solar y planetaria ayudará a los investigadores a comprender y predecir cómo afecta el clima solar a las naves espaciales y a los sistemas de comunicaciones por satélite. El año pasado, por ejemplo, una tormenta solar dejó fuera de servicio 40 satélites de SpaceX. El fenómeno también ha sido problemático para la tecnología militar: la formación de plasma turbulento alrededor de misiles hipersónicos, por ejemplo, puede interferir en las comunicaciones de los sistemas de armas.

Putterman y sus colegas están ampliando el experimento para reproducir mejor las condiciones que están estudiando y poder observar el fenómeno con más detalle y durante más tiempo.

Continue Reading

Trending