Connect with us
Weather Data Source: pronóstico del tiempo

Ciencia

El misterio geométrico de la galaxia NGC 7020

Published

on

MADRID, 24 Jun. (EUROPA PRESS) – La galaxia lenticular barrada NGC 7020, que se encuentra en la constelación austral del Pavo, encierra un misterio geométrico.

En esta imagen del telescopio Gemini Sur, una mitad del Observatorio Gemini, se aprecia de forma clara, y a la vez sutil, que el núcleo de NGC 7020 tiene visiblemente un forma visiblemente hexagonal. Un hexágono no es una forma común para ningún cuerpo celeste, y mucho menos para una galaxia entera.

Para formar una estructura hexagonal como ésta, un número considerable de estrellas debe orbitar en una banda muy estrecha. Esta trayectoria orbital consta de dos regiones más densas de estrellas que se ven en los lados izquierdo y derecho del hexágono, que se conocen como «asas». La forma inusual de NGC 7020 parece ser el producto de una resonancia orbital muy rara o de un fenómeno aún desconocido, informa la NASA.

El telescopio Gemini Sur de 8 metros está situado en Cerro Pachón, en los Andes chilenos. Junto con la otra mitad del observatorio, Gemini Norte (Hawai), estos dos telescopios nos dan una visión profunda de todo el cielo nocturno.

Ciencia

Replican la gravedad en otros mundos en una esfera de 3 centímetros

Published

on

MADRID, 24 Ene. (EUROPA PRESS) –

Investigadores de la UCLA han reproducido con eficacia el tipo de gravedad que existe en las estrellas y otros planetas o cerca de ellos en una esfera de cristal de solo 3 centímetros de diámetro.

Para ello, utilizaron ondas sonoras para crear un campo gravitatorio esférico y generar convección de plasma -un proceso en el que el gas se enfría al acercarse a la superficie de un cuerpo y luego se recalienta y vuelve a elevarse al acercarse al núcleo- creando una corriente de fluido que a su vez genera una corriente magnética.

Este logro, que se publica en Physical Review Letters, podría ayudar a los científicos a superar el papel limitador de la gravedad en los experimentos destinados a modelizar la convección que se produce en las estrellas y otros planetas.

«La gente estaba tan interesada en tratar de modelizar la convección esférica con experimentos de laboratorio que, de hecho, pusieron un experimento en el transbordador espacial porque no podían conseguir un campo de fuerza central lo suficientemente fuerte en tierra», dijo en un comunicado Seth Putterman, profesor de física de la UCLA (Universidad de California Los Ángeles) y autor principal del estudio. «Lo que demostramos es que nuestro sistema de sonido generado por microondas producía una gravedad tan fuerte que la gravedad terrestre no era un factor. Ya no necesitamos ir al espacio para hacer estos experimentos».

Los investigadores de la UCLA utilizaron microondas para calentar gas de azufre a 2.760 grados Celsius dentro de la esfera de cristal. Las ondas sonoras dentro de la bola actuaron como la gravedad, limitando el movimiento del gas caliente y débilmente ionizado, conocido como plasma, en patrones que se asemejan a las corrientes de plasma en las estrellas.

«Los campos sonoros actúan como la gravedad, al menos cuando se trata de impulsar la convección en el gas», explica John Koulakis, científico del proyecto de la UCLA y primer autor del estudio. «Con el uso de sonido generado por microondas en un matraz esférico de plasma caliente, conseguimos un campo gravitatorio mil veces más fuerte que la gravedad terrestre».

En la superficie de la Tierra, el gas caliente asciende porque la gravedad mantiene el gas más denso y frío más cerca del centro del planeta.

De hecho, los investigadores descubrieron que el gas caliente y brillante cerca de la mitad exterior de la esfera también se desplazaba hacia las paredes de la esfera. La gravedad fuerte y sostenida generaba turbulencias parecidas a las que se observan cerca de la superficie del Sol. En la mitad interior de la esfera, la gravedad acústica cambió de dirección y apuntó hacia el exterior, lo que provocó que el gas caliente se hundiera hacia el centro. En el experimento, la gravedad acústica retuvo de forma natural el plasma más caliente en el centro de la esfera, donde también ocurre en las estrellas.

COMPRENDER LOS EFECTOS DEL CLIMA SOLAR

La capacidad de controlar y manipular el plasma de forma que refleje la convección solar y planetaria ayudará a los investigadores a comprender y predecir cómo afecta el clima solar a las naves espaciales y a los sistemas de comunicaciones por satélite. El año pasado, por ejemplo, una tormenta solar dejó fuera de servicio 40 satélites de SpaceX. El fenómeno también ha sido problemático para la tecnología militar: la formación de plasma turbulento alrededor de misiles hipersónicos, por ejemplo, puede interferir en las comunicaciones de los sistemas de armas.

Putterman y sus colegas están ampliando el experimento para reproducir mejor las condiciones que están estudiando y poder observar el fenómeno con más detalle y durante más tiempo.

Continue Reading

Ciencia

Físicos observan cómo una estrella sobrevive a un agujero negro

Published

on

MADRID, 20 Ene. (EUROPA PRESS) –

Un equipo de físicos ha podido observar la sorprendente órbita de una estrella alrededor de un agujero negro supermasivo, sobreviviendo en primera instancia a la interacción con el mismo.

A cientos de millones de años luz de distancia, en una galaxia lejana, una estrella en órbita alrededor de un agujero negro supermasivo está siendo violentamente desgarrada por la inmensa atracción gravitatoria del agujero negro. A medida que la estrella es destrozada, sus restos se transforman en una corriente de escombros que llueven de nuevo sobre el agujero negro para formar un disco de material muy caliente y muy brillante que gira alrededor del agujero negro, llamado disco de acreción.

Este fenómeno, en el que una estrella es destruida por un agujero negro supermasivo y genera una luminosa llamarada de acreción, se conoce como evento de disrupción de marea (TDE, por sus siglas en inglés), y se prevé que los TDE se produzcan aproximadamente una vez cada 10.000 a 100.000 años en una galaxia determinada.

Con luminosidades que superan a las de galaxias enteras (es decir, miles de millones de veces más brillantes que nuestro Sol) durante breves periodos de tiempo (de meses a años), los fenómenos de acreción permiten a los astrofísicos estudiar los agujeros negros supermasivos (SMBH) desde distancias cosmológicas, proporcionando una ventana a las regiones centrales de galaxias que, de otro modo, permanecerían inactivas.

Al sondear estos sucesos de «gravedad intensa», en los que la teoría general de la relatividad de Einstein es fundamental para determinar cómo se comporta la materia, las TDE aportan información sobre uno de los entornos más extremos del universo: el horizonte de sucesos -el punto de no retorno- de un agujero negro.

Por lo general, las TDE se producen «una vez y ya está» porque el campo gravitatorio extremo del SMBH destruye la estrella, lo que significa que el SMBH se desvanece en la oscuridad tras la llamarada de acreción. En algunos casos, sin embargo, el núcleo de alta densidad de la estrella puede sobrevivir a la interacción gravitatoria con el SMBH, lo que le permite orbitar alrededor del agujero negro más de una vez. Los investigadores llaman a esto un TDE parcial repetitivo.

Un equipo de físicos, entre ellos el autor principal Thomas Wevers, miembro del Observatorio Europeo Austral, y los coautores Eric Coughlin, profesor adjunto de Física en la Universidad de Syracuse, y Dheeraj R. «DJ» Pasham, científico investigador del Instituto Kavli de Astrofísica e Investigación Espacial del MIT, han propuesto un modelo de TDE parcial repetitiva basado en la observación.

Sus conclusiones, publicadas en The Astrophysical Journal Letters, describen la captura de la estrella por un SMBH, la extracción del material cada vez que la estrella se acerca al agujero negro y el retardo entre el momento en que el material es extraído y el momento en que alimenta de nuevo al agujero negro.

El trabajo del equipo es el primero en desarrollar y utilizar un modelo detallado de una TDE parcial repetitiva para explicar las observaciones, hacer predicciones sobre las propiedades orbitales de una estrella en una galaxia lejana y comprender el proceso de perturbación parcial por marea.

El equipo está estudiando una TDE conocida como AT2018fyk (AT significa «Astrophysical Transient»). La estrella fue capturada por un SMBH mediante un proceso de intercambio conocido como «captura de Hills», en el que la estrella formaba parte originalmente de un sistema binario (dos estrellas que orbitan una alrededor de la otra bajo su mutua atracción gravitatoria) que fue desgarrado por el campo gravitatorio del agujero negro. La otra estrella (no capturada) fue expulsada del centro de la galaxia a velocidades comparables a unos 1.000 km/s, lo que se conoce como estrella de hipervelocidad.

Una vez unida al SMBH, la estrella que alimenta la emisión de AT2018fyk ha sido despojada repetidamente de su envoltura exterior cada vez que pasa por su punto de máxima aproximación al agujero negro. Las capas exteriores despojadas de la estrella forman el brillante disco de acreción, que los investigadores pueden estudiar utilizando telescopios ópticos de rayos X y ultravioleta que observan la luz de galaxias lejanas.

Según Wevers, tener la oportunidad de estudiar un TDE parcial repetido proporciona una visión sin precedentes de la existencia de agujeros negros supermasivos y de la dinámica orbital de las estrellas en los centros de las galaxias.

«Hasta ahora, la suposición era que cuando vemos las secuelas de un encuentro cercano entre una estrella y un agujero negro supermasivo, el resultado será fatal para la estrella, es decir, la estrella se destruye por completo», afirma en un comunicado. «Pero, al contrario de lo que ocurre con todas las demás TDE que conocemos, cuando volvimos a apuntar nuestros telescopios al mismo lugar varios años después, descubrimos que había vuelto a brillar. Esto nos llevó a proponer que, en lugar de ser fatal, parte de la estrella sobrevivió al encuentro inicial y regresó al mismo lugar para ser despojada de material una vez más, explicando la fase de rebrillantez.»

Continue Reading

Ciencia

Una sorprendente cámara de magma crece bajo un volcán mediterráneo

Published

on

MADRID, 13 Ene. (EUROPA PRESS) –

Un nuevo estudio revela la existencia de una gran masa de magma móvil bajo el Kolumbo, un volcán submarino activo cerca de Santorini (Grecia), que hasta ahora no se había detectado.

La presencia de la cámara de magma –detectada gracias a una novedosa técnica de obtención de imágenes de volcanes que produce imágenes de alta resolución de las propiedades de las ondas sísmicas– aumenta las probabilidades de una futura erupción, lo que lleva a los investigadores a recomendar estaciones de vigilancia de riesgos en tiempo real cerca de otros volcanes submarinos activos para mejorar las estimaciones de cuándo es probable que se produzca una erupción.

Hace casi cuatrocientos años, en 1650, el Kolumbo rompió la superficie del mar y entró en erupción, matando a 70 personas en Santorini. Esta erupción, que no debe confundirse con la catastrófica erupción volcánica de Thera (Santorini) ocurrida hacia 1600 a.C., fue provocada por el crecimiento de depósitos de magma bajo la superficie del Kolumbo. Ahora, los investigadores afirman que la roca fundida de la cámara está alcanzando un volumen similar.

El estudio, publicado en la revista Geochemistry, Geophysics and Geosystems, es el primero en utilizar imágenes sísmicas de inversión de forma de onda completa para buscar cambios en la actividad magmática bajo la superficie de los volcanes submarinos del Arco Helénico, donde se encuentra el Kolumbo.

La tecnología de inversión de forma de onda completa se aplica a perfiles sísmicos -registros de movimientos del terreno a lo largo de líneas kilométricas- y evalúa las diferencias en las velocidades de onda que pueden indicar anomalías en el subsuelo. El estudio demostró que la tecnología de inversión de forma de onda completa puede utilizarse en regiones volcánicas para encontrar posibles ubicaciones, tamaños y tasas de fusión de cuerpos de magma móviles.

Los perfiles sísmicos se construyeron después de que los investigadores efectuaran disparos con cañones de aire desde un buque de investigación que sobrevolaba la región volcánica, provocando ondas sísmicas que fueron registradas por sismómetros de fondo situados a lo largo del arco.

«La inversión de la forma de onda completa es similar a una ecografía médica», explica en un comunicado Michelle Paulatto, vulcanólogo del Imperial College de Londres y segundo autor del estudio. «Utiliza ondas sonoras para construir una imagen de la estructura subterránea de un volcán».

Según el estudio, una disminución significativa de la velocidad de las ondas sísmicas que viajan bajo el lecho marino indica la presencia de una cámara de magma móvil bajo el Kolumbo. Las características de las anomalías de las ondas se utilizaron para hacerse una mejor idea de los peligros potenciales que puede presentar la cámara de magma.

Según Kajetan Chrapkiewicz, geofísico del Imperial College de Londres y autor principal del estudio, los datos existentes sobre los volcanes submarinos de la región eran escasos y borrosos, pero el denso conjunto de perfiles sísmicos y la inversión de la forma de onda completa les ha permitido obtener imágenes mucho más nítidas que antes. Éstas se utilizaron para identificar una gran cámara de magma que ha ido creciendo a un ritmo medio de unos 4 millones de metros cúbicos al año desde la última erupción del Kolumbo en 1650 E.C.

Según el estudio, el volumen total de fundido acumulado en el depósito de magma bajo el Kolumbo es de 1,4 kilómetros cúbicos. Según Chrapkiewicz, si se mantiene el ritmo actual de crecimiento de la cámara magmática, en algún momento de los próximos 150 años el Kolumbo podría alcanzar los 2 kilómetros cúbicos de volumen de fundido que se calcula que fue expulsado durante la erupción de 1650 E.C. Aunque los volúmenes de fusión volcánica pueden estimarse, no hay forma de saber con seguridad cuándo entrará en erupción el Kolumbo.

Continue Reading

Trending